A Survey : Clustering Ensemble Techniques with Consensus Function

نویسندگان

  • M. Mekala
  • P. Elango
چکیده

The clustering ensembles contains multiple partitions are divided by different clustering algorithms into a single clustering solutions. Clustering ensembles used for improving robustness, stability, and accuracy of unsupervised classification solutions. The major problem of clustering ensemble is the consensus function. Consensus functions in clustering ensembles including hyperactive graph partition, mutual information, co-association based functions, voting approach and finite machine. The characteristics of clustering ensembles algorithm are computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble

An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...

متن کامل

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

انتخاب خوشه‌های اولیه به کمک الگوریتم‌های هوشمند برای مشارکت در خوشه‌بندی ترکیبی

Most of the recent studies have tried to create diversity in primary results and then applied a consensus function over all the obtained results to combine the weak partitions. In this paper a clustering ensemble method is proposed which is based on a subset of primary clusters. The main idea behind this method is using more stable clusters in the ensemble. The stability is applied as a goodnes...

متن کامل

خوشه‌بندی ترکیبی مبتنی بر زیرمجموعه‌ای از خوشه‌های اولیه

Most of the recent studies have tried to create diversity in primary results and then applied a consensus function over all the obtained results to combine the weak partitions. In this paper a clustering ensemble method is proposed which is based on a subset of primary clusters. The main idea behind this method is using more stable clusters in the ensemble. The stability is applied as a goodnes...

متن کامل

The ensemble clustering with maximize diversity using evolutionary optimization algorithms

Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016